OXYGEN DELIVERY DEVICES

Minute Ventilation (MV) = $V_T \times RR$

Peak Inspiratory **Flow Rate** (PIFR) = how fast you draw your breath in PIFR is influenced by MV (↑RR → ↑PIFR)

O2 delivery devices are either variable or fixed, indicating how they're affected by PIFR

If O₂ delivery device's flow rate does not meet PIFR (or there is an inappropriate seal) \rightarrow room air entrainment \rightarrow FiO₂ < expected

High flow rates (eg, HFNC) & sealed systems deliver more predictable FiO₂ because the flow rate ≥ PIFR & decreases entrained room air

DEVICE		F _i O ₂	NOTES	
	Low Flow Devices			Quick estimate: Every 1L of flow provides an additional ~3% of ${\rm FiO}_2$
	Nasal cannula (NC)		~24-40%	 Easy to administer Variable flow/F₁O₂ relationship Keep flow ≤ 6 L/min (Flow > 6 L/min is irritating and provides no increase in FiO₂) Humidify if > 4 L/min
	Simple Facemask	Orthe	~24-50%	 Better for patients that breath through their mouth Often mistaken for NRB; <u>not</u> to be used for resuscitation Keep flow > 5 L/min to avoid rebreathing trapped CO₂ Max flow 10L/min
	Reservoir Systems			
	Oxymizer		~24-45%	 Small reservoir stores O2 and delivers 'push' of high FiO₂ oxygen with inspiration Delivers slightly higher FiO₂ than NC at same L/min flow
	Non-Rebreather mask (NRB)	COR S	Theoretical: 100% Realistic: ~60-90% (due to entrainment of room air)	 Easy way to deliver high FiO2 quickly & non-invasively Go-to for acute hypoxemia (ie, rapid response) Keep flow > 10-15 L/min Tachypnea → ↑ room air entrainment

NRBs are designed to capture the first 150mL of exhaled breath into a reservoir bag for inhalation during the subsequent breath. This portion of the breath was initially delivered to the deadspace anatomy at the end of inhalation, so gas exchange did not occur. Therefore, there would be no depletion of oxygen nor gain of CO₂ during rebreathing.

High Flow Devices

- Consider in patients with specific SpO₂ goals (eg, COPD)
- Specific valves allow you to administer fixed $F_iO_2,$ independent of RR or V_T
- The higher the FiO₂, the lower the flow rates

Originally thought to operate on the Venturi effect, however, Venturi masks actually utilize **jet mixing**, a corollary to **Bernoulli's Principle**, which states that fluids (air/O₂) moving at higher speeds exert less outward pressure. Venturi masks deliver a high flow of O₂ through a small input nozzle in the mask; openings in the mask adjacent to the inflow of delivered O₂ allow for room air to be drawn in (entrained) due to the lower outward pressure exerted by the O₂ jet. The flow of room air drawn in is predictable based on the set flow of the O₂ jet, producing an accurate and fixed FiO₂ regardless of RR or V_T.

High-flow nasal cannula (HFNC)

~21-100%

10-60 L/min of flow

- Provides small amount of PEEP
- Flow rate and FiO₂ can be titrated separately
- High flows minimize O₂ dilution (even in mouth breathers)
- Aids in CO_2 washout and \downarrow dead space